

Alternative Water Source Study

Village Board Update

November 15, 2021

Stephen T. Dennison, PE
Senior Project Manager / Principal

Jeffrey W. Freeman, PE, CFM, LEED AP
Chief Executive Officer

WATER SUPPLY OBJECTIVES

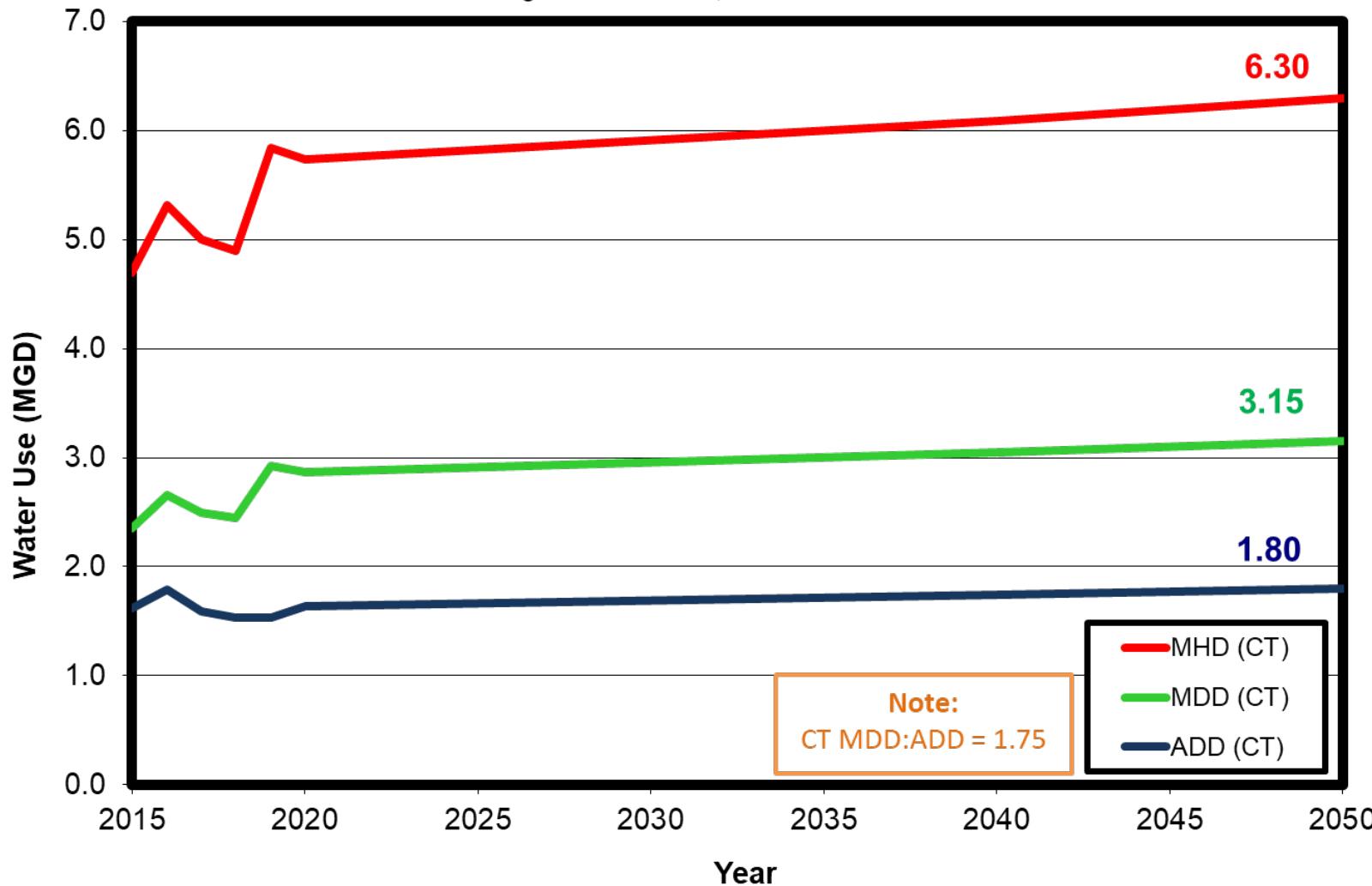
SUSTAINABLE

REGULATORY
COMPLIANT

HIGH
QUALITY

COST
EFFECTIVE

Agenda


1. Review
2. Capital Cost Estimates and O&M Cost Estimates
3. Cost and Rate Analysis
4. Conclusions/Recommendations
5. Next Steps

REVIEW

Historical and Projected Water Use Summary

Village of Lake Zurich, IL

Projected Water Demands

Projected

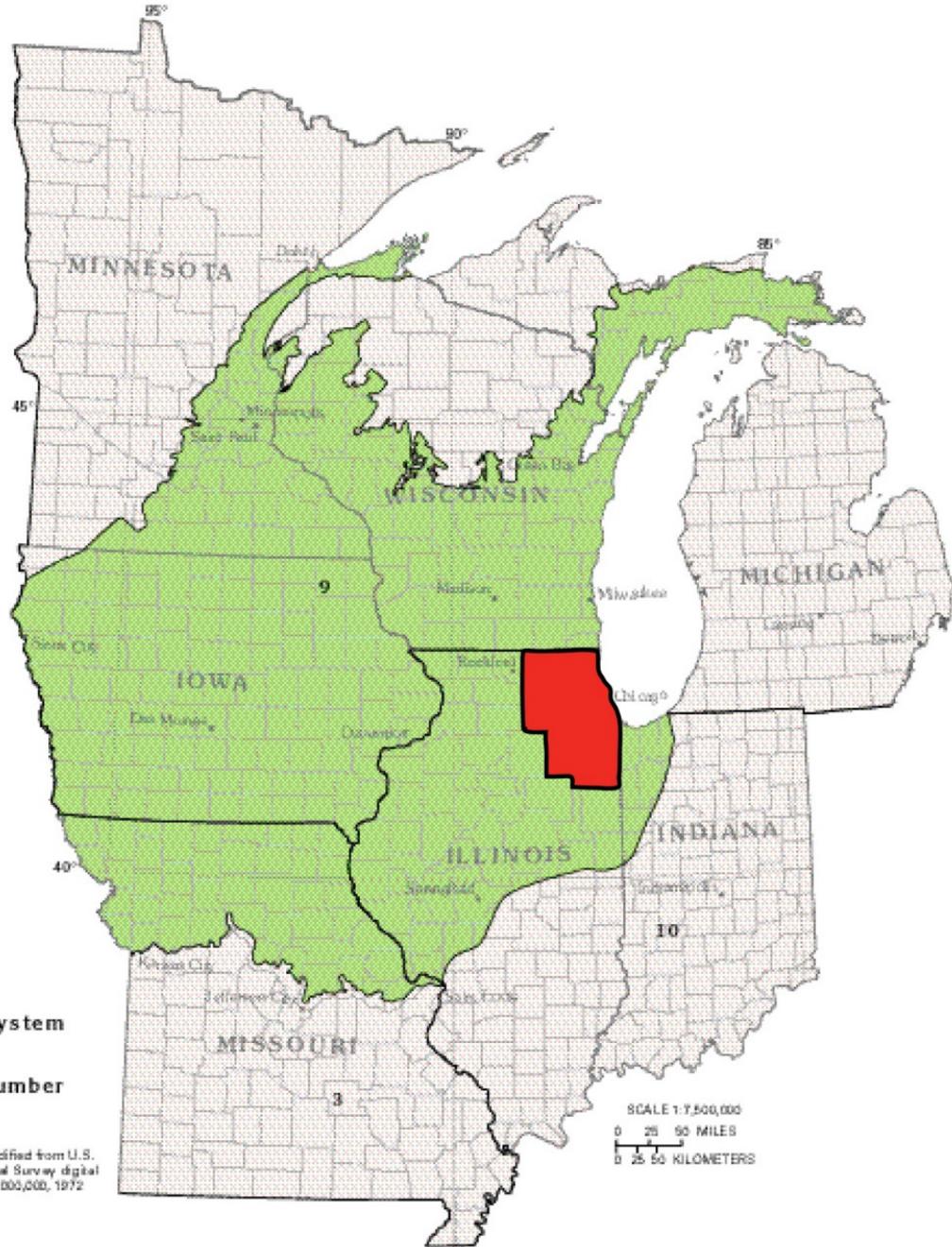
MDD:ADD Ratio:

1.75

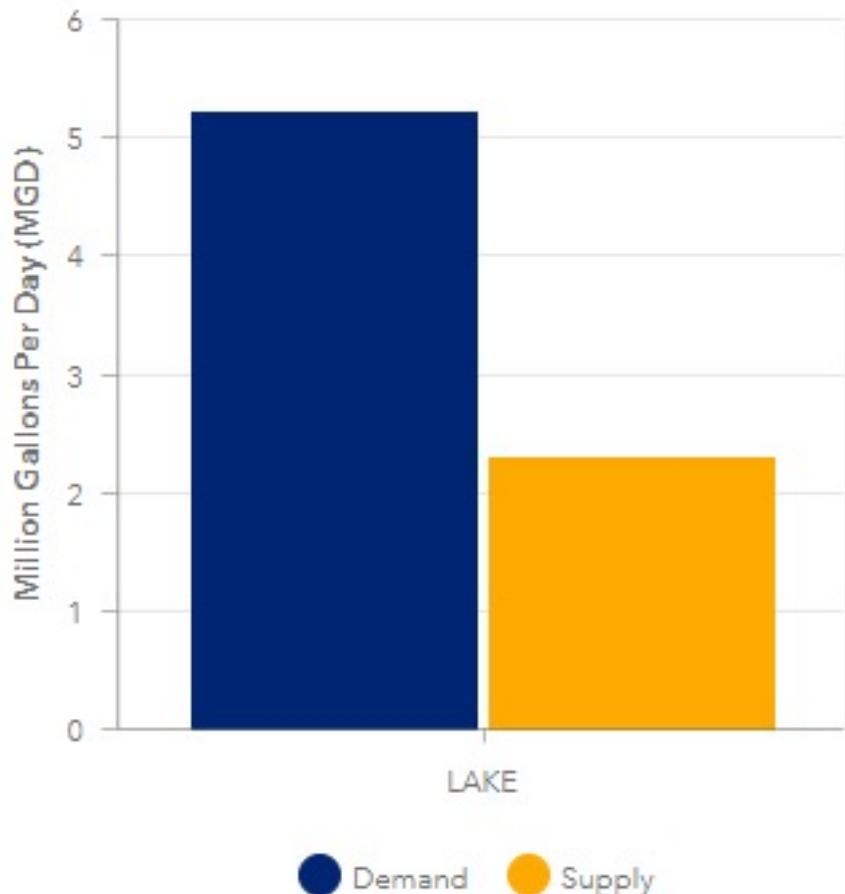
Projected Water Use Per Person in 2050: 75 gpcd

Regional Groundwater Aquifer

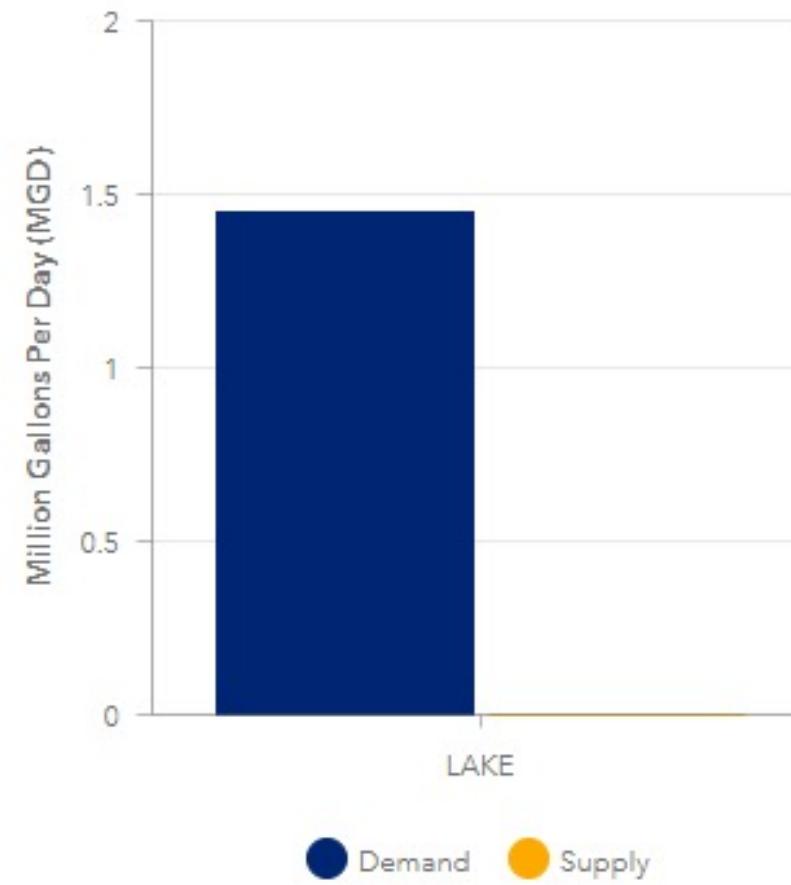
Cambrian- Ordovician Aquifer


Figure 20. The Cambrian-Ordovician aquifer system, which consists of predominantly sandstone aquifers separated by poorly permeable confining units, extends over a large part of the north-central United States.

Modified from Young, H.L., 1992b, Hydrogeology of the Cambrian-Ordovician aquifer system in the northern midwest, United States, with a section on Ground-water quality by D.I. Siegel: U.S. Geological Survey Professional Paper 1405-B, 99 p.


EXPLANATION

- Cambrian-Ordovician aquifer system
- 9 Atlas segment boundary and number


Base modified from U.S. Geological Survey digital data, 1:2,000,000, 1972

Total Sandstone Sustainable Yield

Ironton-Galesville Sustainable Yield

<https://prairie-research.maps.arcgis.com/apps/opsdashboard/index.html#/9825690df3b14da39f03bdf2b69cd33e>

HISTORIC TRENDS AND CURRENT STATUS

Significant Depletion of the Water in the St. Peter and Ironton-Galesville Aquifers

Slight Recovery in Deep Aquifers Since 1980's Due to Decreased Usage (Increased Regional Usage of Lake Michigan)

Current Status – Aquifers Are Adequate for Village's Use

Summary and Application – Deep Sandstone Aquifer Sustainability

PROJECTED TRENDS

Water Levels in the Deep Sandstone Aquifers are Projected to Decline

Highly Dependent on Regional Development and Usage of the Aquifers

Lake County Demand for Water From Deep Aquifers is Greater Than Replenishing Supply

Implications to Village: Short-Term Sustainability Adequate, but Long-Term (30+ Years) Sustainability a Concern

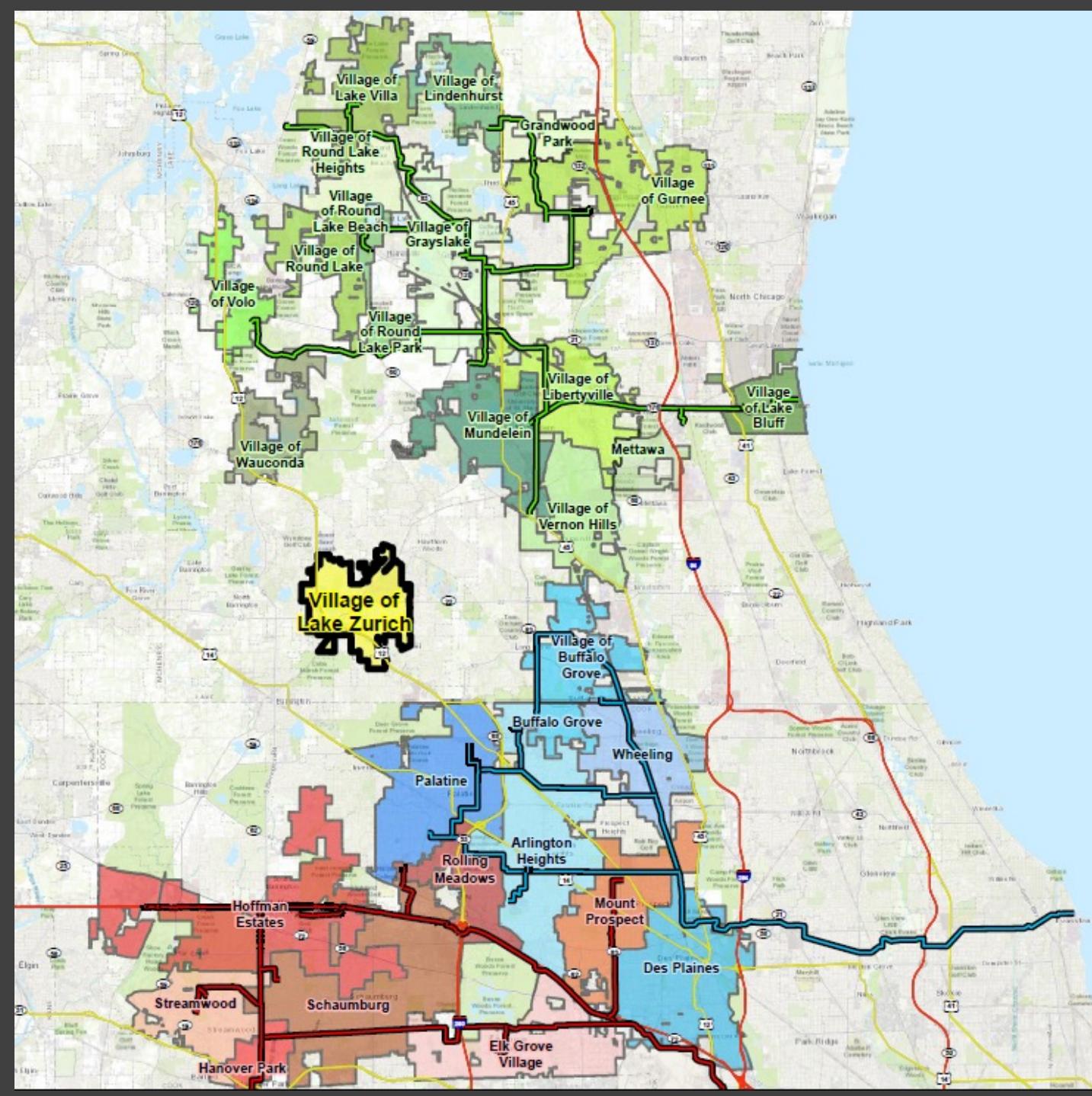
Groundwater Treatment Overview

St. Peter & Ironton-Galesville Sandstone
Naturally Occurring Radium & Barium

Village's Treatment

- Cation Exchange
- Removes Radium, Barium and Hardness (Softens Water)
- Sends Radium and Barium to Lake Co. PW

Radium Removal - Regulations


- USEPA/IEPA – 5.0 pCi/L MCL
- Established in Early 2000's
- Impacted Many CWS' in NE IL

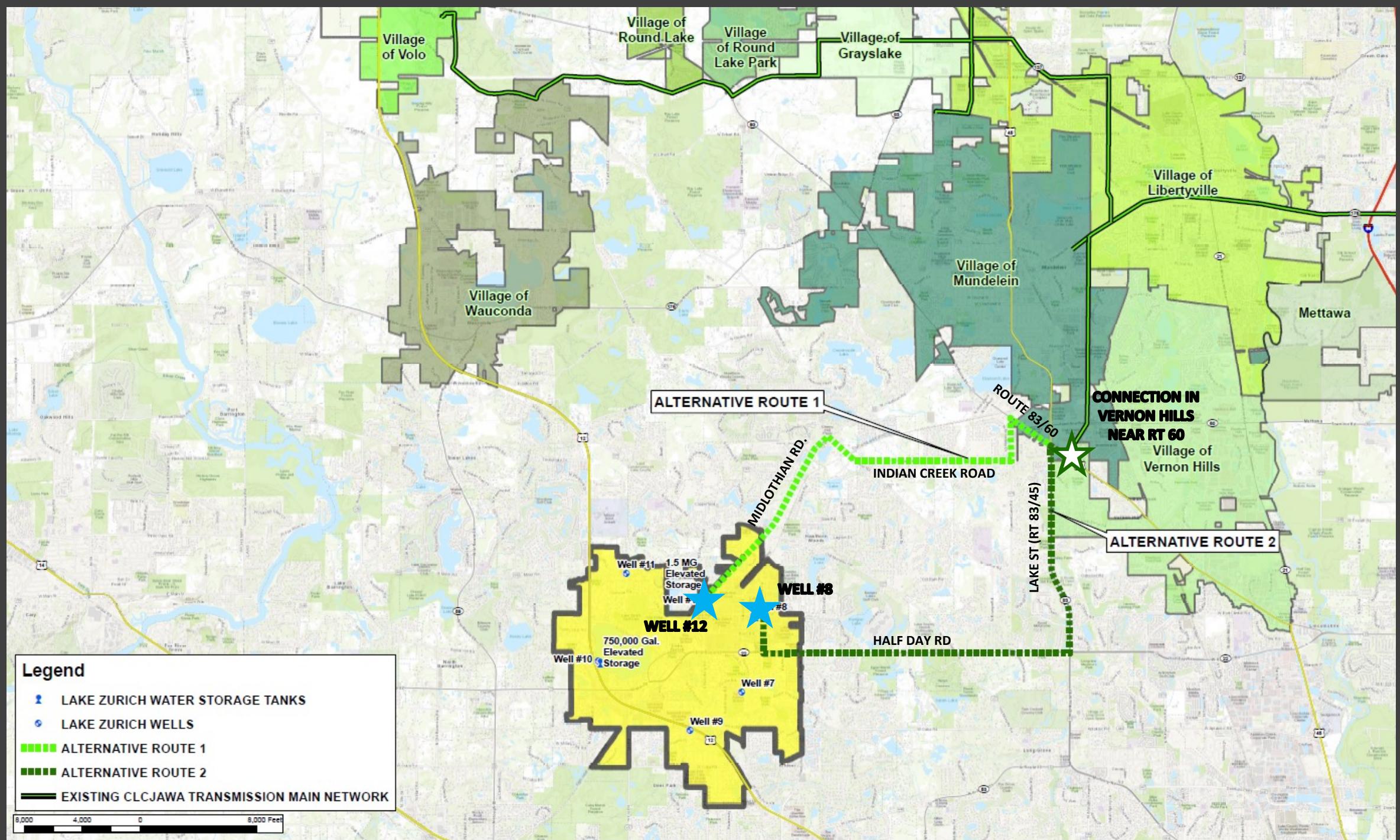
Radium Removal - Technologies

- Best Available Technologies
 - ✓ Cation Exchange
 - ✓ Lime Softening
 - ✓ Membranes (Reverse Osmosis)
- Other
 - ✓ HMO
 - ✓ Radium Selective Media

Decision Component	Pretreatment	Replacement		Treatment/Handling of Waste			
	WRT Radium Selective Media	WRT Radium Selective Media	Lime Softening	WesTech SPIRALATOR	Liquid Hauling	Solid Separation and Settling	Gilberts Solid Separation Design
Project Costs							
Capital Cost	\$\$	\$	\$\$\$	\$\$\$	\$\$\$	\$\$\$	\$\$\$
Annual O&M Cost	\$\$	\$\$	\$\$\$	\$\$	\$\$\$	\$\$	\$\$
Total Present Worth Cost	\$\$\$	\$\$	\$\$\$	\$\$\$	\$\$\$	\$\$\$	\$\$\$
Water Quality							
Anticipated Change to Finished Water Quality	↔	↔	↑	↔	↔	↔	↔
Operation and Maintenance							
O&M Responsibility	📋	📋	📋📋📋	📋📋📋	📋	📋📋📋	📋📋📋
Risk							
Implementation Difficulty (Short Term Risk/Permitting)	✓✓	✓✓✓✓✓	✓✓✓✓	✓✓✓✓	✓✓✓✓	✓✓✓✓	✓✓✓✓
Long Term Risk/Reliability/Regulatory Concerns	✓✓✓	✓✓✓✓✓	✓✓	✓✓✓✓	✓✓	✓✓✓✓	✓✓✓✓
Timing							
Piloting/Testing/Corrosion Control Study	⌚⌚	⌚⌚⌚	⌚⌚⌚	⌚⌚	NONE	⌚⌚⌚	⌚⌚⌚
Schedule of Implementation	⌚⌚	⌚⌚	⌚⌚⌚	⌚⌚⌚	⌚⌚	⌚⌚⌚	⌚⌚⌚

Lake Michigan (LM) Supplier Options

Legend


Lake Michigan Water Source

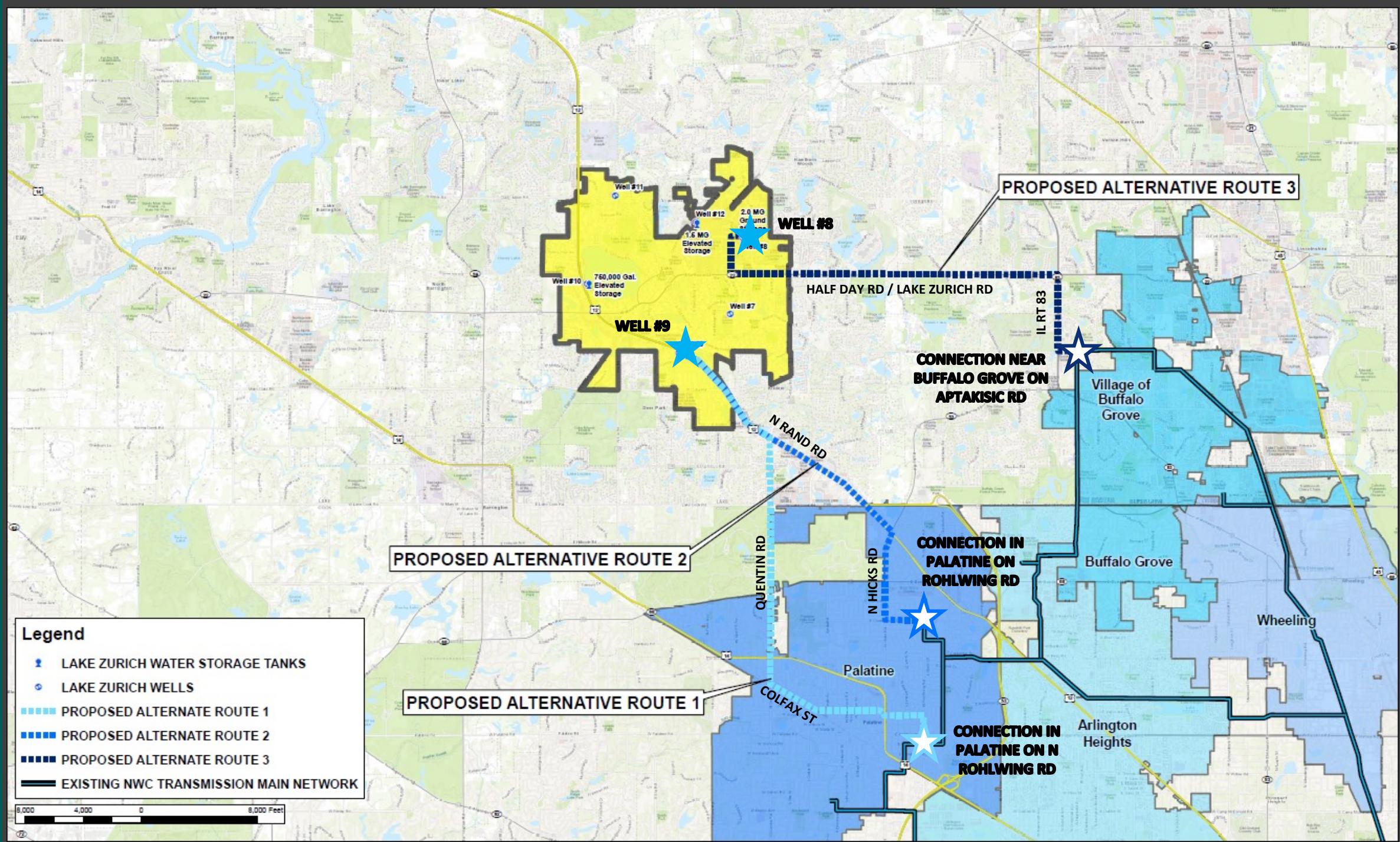
- Central Lake County JAWA (From Lake Bluff)
- Northwest Water Commission (From Evanston)
- Northwest Suburban Municipal JAWA (From Chicago)

- CLCJAWA Transmission Main
- NWC Transmission Main
- NSMJAWA Transmission Main

CLCJAWA SUMMARY & KEY CONSIDERATIONS

Lake Zurich ranks high on CLCJAWA list for potential new customer (tied for first)

As a Member, Lake Zurich would have to pay an equity buy-in fee that can be financed over 30 years


Excellent Water Quality from Treatment Facility

Lake Zurich would have to upsize transmission main diameter for future downstream communities

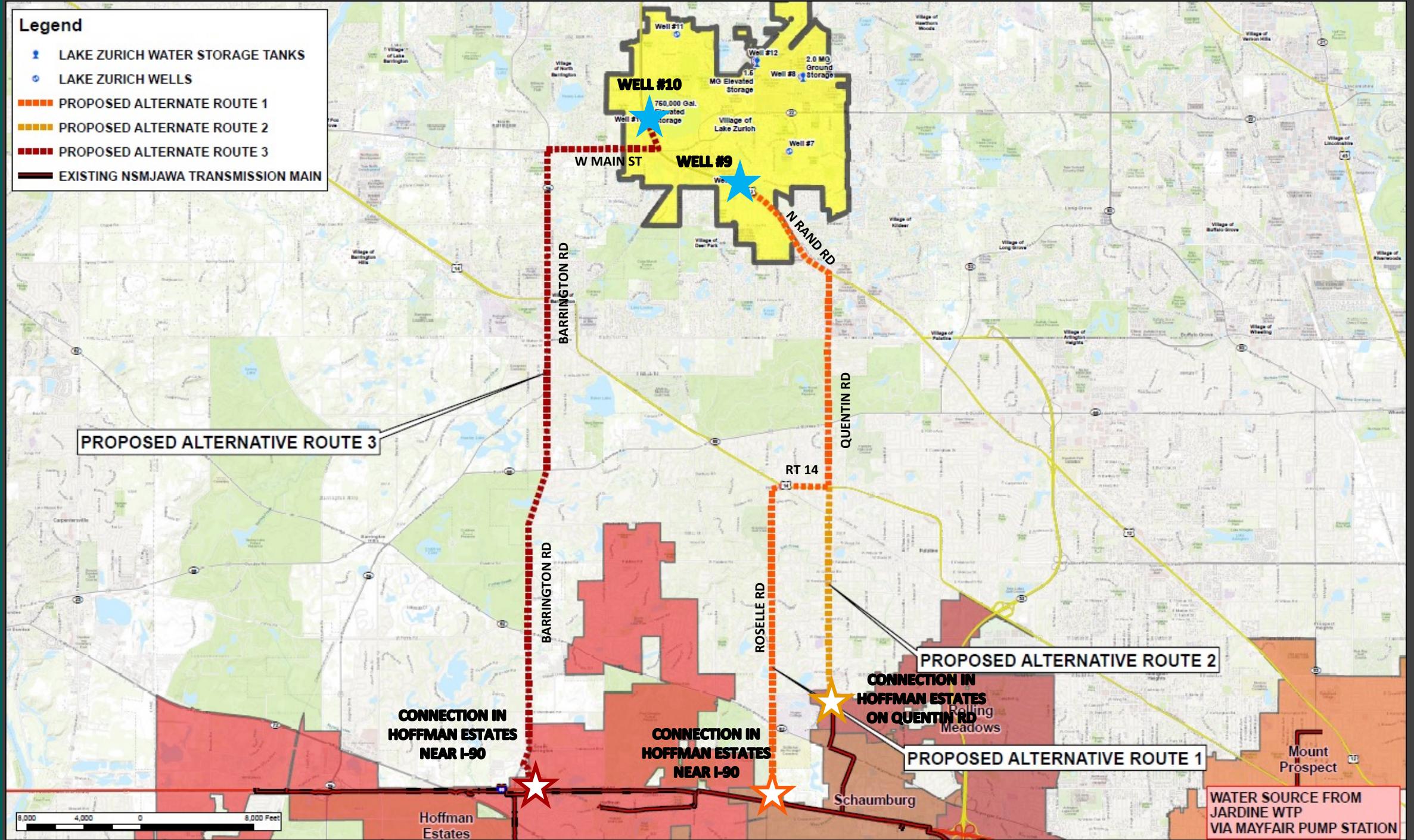
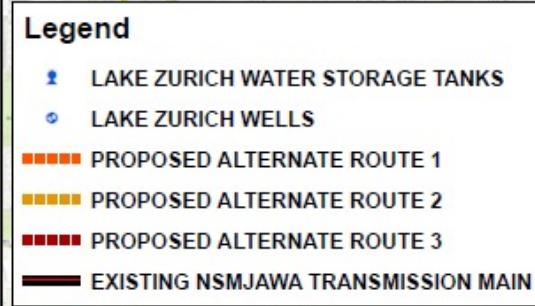
Direct Purchase of Water from the Treatment Facility – Not Through Wholesaler

Would require pumping improvements to increase capacity and pressures, but NO extra storage requirements related to CLCJAWA

NWC SUMMARY & KEY CONSIDERATIONS

Connection points are relatively close to Lake Zurich (Transmission Main Requirements)

No buy in costs since Lake Zurich is anticipated to join as a customer, but no member representation on Board



Usage is decreasing so open to adding new customers

Potential construction conflicts with proposed routes

Storage addition required

Lowest available capacity out of all three suppliers

NSMJAWA SUMMARY & KEY CONSIDERATIONS

More than adequate capacity to supply Lake Zurich & very interested in obtaining new customers.

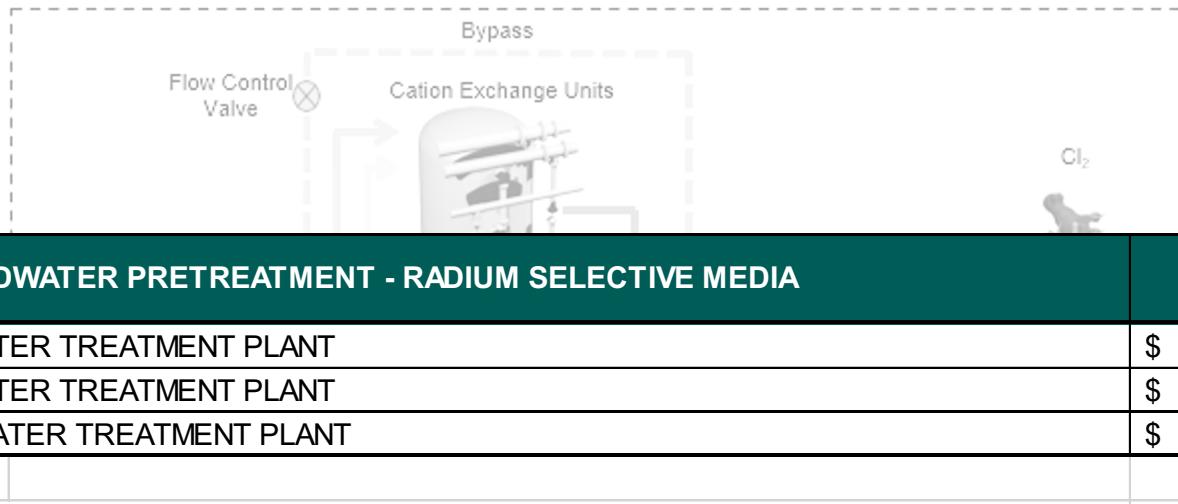
All connection points are far from Lake Zurich and run along major highways and state routes (IDOT complications)

No major service disruptions in the past 5 years

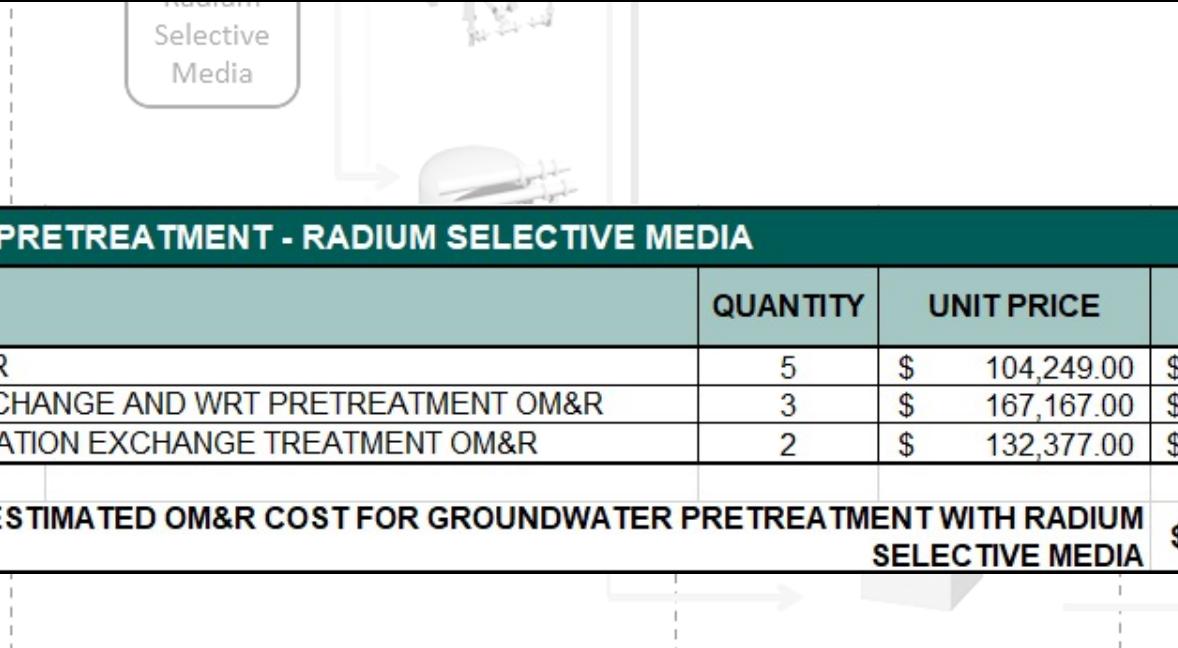
Additional storage required and would need to be placed within Village limits.

Could possibly partner with neighboring community to share transmission main costs.

Highest current water rates per 1,000 gallons.


Decision Component	CLCJAWA	NWC	NSMJAWA
Project Costs			
Capital Cost (Including Equity Buy-In)	\$\$\$	\$\$	\$\$\$
Annual O&M Cost (Including Rates)	\$	\$	\$\$\$
Total Present Worth Cost	\$\$\$	\$\$	\$\$\$
Water Quality			
Anticipated Change to Finished Water Quality	↑↑	↑	↑
Proximity			
Distance to Anticipated Connection Point(s) and Treatment Source	↗	↗	↗↗
Reliability			
Historic and Anticipated Future Reliability for Supply (Disruptions)	✓✓	✓✓	✓✓
Expendability/Capacity			
Supplier's Available Capacity	📊📊	📊	📊📊📊
Control			
Village's Control Over System (Member vs. Customer)	✋✋	✋	✋

CAPITAL AND O&M COST ESTIMATES


Groundwater Pretreatment – Radium Selective Media

Capital Costs

OPTION 1: GROUNDWATER PRETREATMENT - RADIUM SELECTIVE MEDIA		TOTAL ESTIMATED CAPITAL COST ¹
WELL NO. 7 WATER TREATMENT PLANT		\$ 4,488,000.00
WELL NO. 8 WATER TREATMENT PLANT		\$ 4,280,000.00
WELL NO. 12 WATER TREATMENT PLANT		\$ 4,818,000.00
TOTAL ESTIMATED COST FOR GROUNDWATER PRETREATMENT WITH RADIUM SELECTIVE MEDIA		\$ 13,586,000.00

O&M Costs

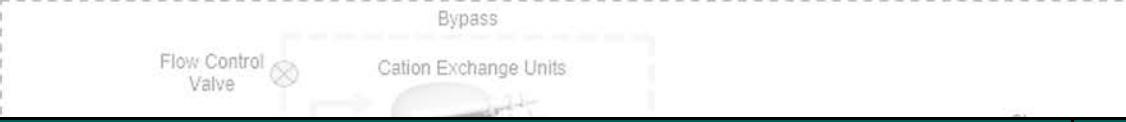
GROUNDWATER PRETREATMENT - RADIUM SELECTIVE MEDIA					
ITEM NO.	ITEM	QUANTITY	UNIT PRICE	AMOUNT	
1	WELL OM&R	5	\$ 104,249.00	\$ 521,245.00	/year
2	CATION EXCHANGE AND WRT PRETREATMENT OM&R	3	\$ 167,167.00	\$ 501,501.00	/year
3	EXISTING CATION EXCHANGE TREATMENT OM&R	2	\$ 132,377.00	\$ 264,754.00	/year
TOTAL ESTIMATED OM&R COST FOR GROUNDWATER PRETREATMENT WITH RADIUM SELECTIVE MEDIA					\$ 1,287,500.00 /year

Water Treatment Plant Building Limits

Gravity or Pumped
Flow to Sanitary
Sewer System

3.5 MGD Single Stage (Claricone) LSWTP

Capital Costs


OPTION 2: 3.5 MGD SINGLE STAGE (CLARICONE) LIME SOFTENING WATER TREATMENT PLANT		TOTAL ESTIMATED CAPITAL COST ¹	
CENTRALIZED LIME SOFTENING WATER TREATMENT PLANT		\$	74,784,000.00
TOTAL ESTIMATED COST FOR GROUNDWATER TREATMENT WITH LIME SOFTENING			
\$ 74,784,000.00			
3.5 MGD SINGLE STAGE (CLARICONE) LIME SOFTENING WATER TREATMENT PLANT			
ITEM NO.	ITEM	QUANTITY	UNIT PRICE
1	WELL OM&R	5	\$ 104,249.00
2	SINGLE STAGE LSWTP OM&R	1	\$ 1,571,027.00
TOTAL ESTIMATED OM&R COST FOR 3.5 MGD SINGLE STAGE (CLARICONE) LIME SOFTENING WATER TREATMENT PLANT			
\$ 2,092,272.00 /year			

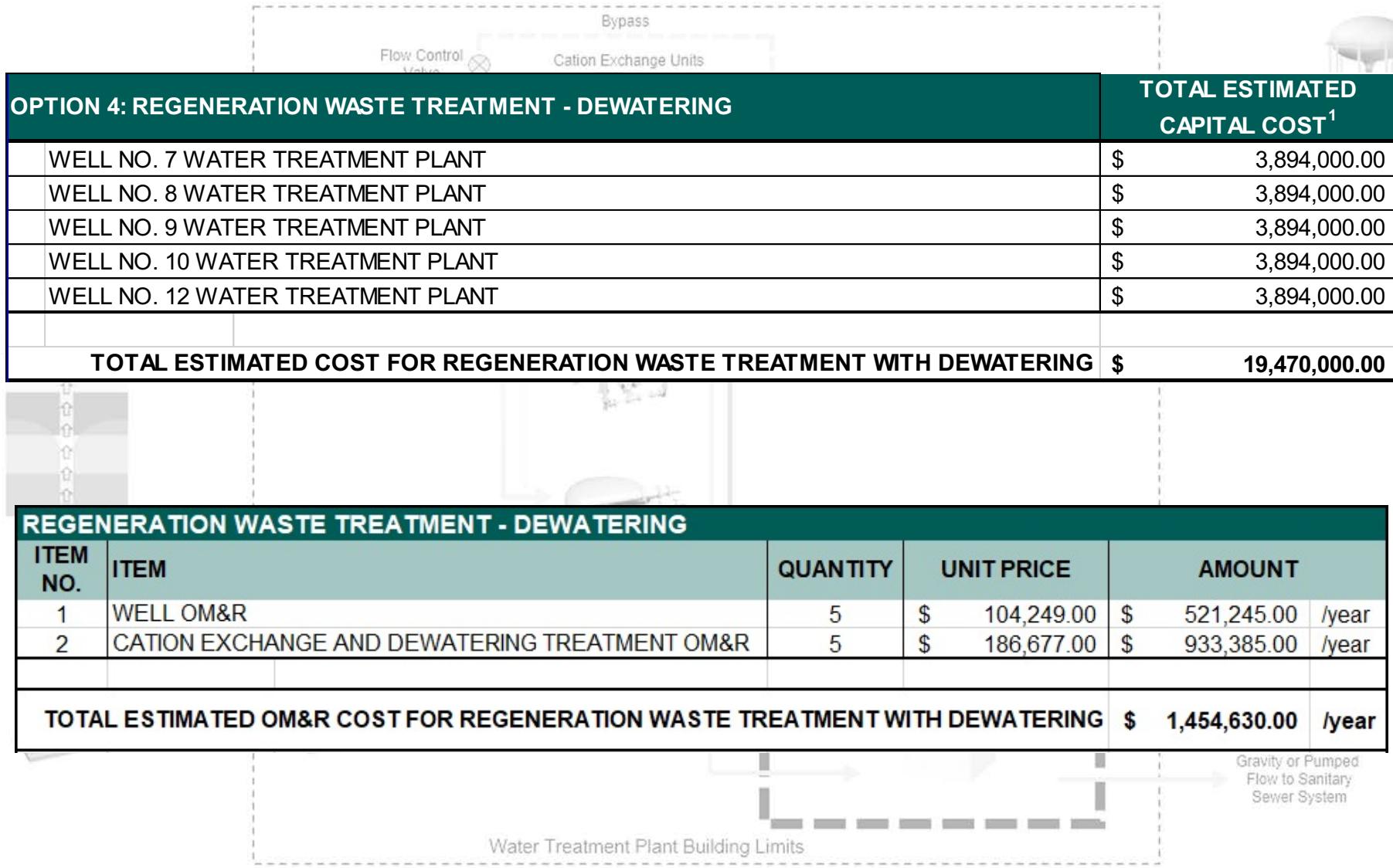
O&M Costs

Regeneration Waste Treatment – WesTech SPIRALATER

Capital Costs

OPTION 3: REGENERATION WASTE TREATMENT - WESTECH SPIRALATER		TOTAL ESTIMATED CAPITAL COST ¹
WELL NO. 7 WATER TREATMENT PLANT		\$ 3,042,000.00
WELL NO. 8 WATER TREATMENT PLANT		\$ 3,113,000.00
WELL NO. 9 WATER TREATMENT PLANT		\$ 3,042,000.00
WELL NO. 10 WATER TREATMENT PLANT		\$ 2,762,000.00
WELL NO. 12 WATER TREATMENT PLANT		\$ 3,042,000.00
TOTAL ESTIMATED COST FOR REGENERATION WASTE TREATMENT WITH SPIRALATER		\$ 15,001,000.00

O&M Costs


REGENERATION WASTE TREATMENT - WESTECH SPIRALATER						
ITEM NO.	ITEM	QUANTITY	UNIT PRICE	AMOUNT		
1	WELL OM&R	5	\$ 104,249.00	\$ 521,245.00	/year	
2	CATION EXCHANGE AND SPIRALATER TREATMENT OM&R	5	\$ 196,677.00	\$ 983,385.00	/year	
TOTAL ESTIMATED OM&R COST FOR REGENERATION WASTE TREATMENT WITH WESTECH SPIRALATER					\$ 1,504,630.00	/year

Water Treatment Plant Building Limits

Regeneration Waste Treatment – Dewatering

Capital Costs

O&M Costs

OPTION 4: REGENERATION WASTE TREATMENT - DEWATERING

		TOTAL ESTIMATED CAPITAL COST¹
WELL NO. 7 WATER TREATMENT PLANT		\$ 3,894,000.00
WELL NO. 8 WATER TREATMENT PLANT		\$ 3,894,000.00
WELL NO. 9 WATER TREATMENT PLANT		\$ 3,894,000.00
WELL NO. 10 WATER TREATMENT PLANT		\$ 3,894,000.00
WELL NO. 12 WATER TREATMENT PLANT		\$ 3,894,000.00
TOTAL ESTIMATED COST FOR REGENERATION WASTE TREATMENT WITH DEWATERING		\$ 19,470,000.00

REGENERATION WASTE TREATMENT - DEWATERING

ITEM NO.	ITEM	QUANTITY	UNIT PRICE	AMOUNT
1	WELL OM&R	5	\$ 104,249.00	\$ 521,245.00 /year
2	CATION EXCHANGE AND DEWATERING TREATMENT OM&R	5	\$ 186,677.00	\$ 933,385.00 /year
TOTAL ESTIMATED OM&R COST FOR REGENERATION WASTE TREATMENT WITH DEWATERING		\$ 1,454,630.00	/year	

Water Treatment Plant Building Limits

Gravity or Pumped Flow to Sanitary Sewer System

Lake Michigan Supply - CLCJAWA

Capital Costs

CLC-JAWA LAKE MICHIGAN SUPPLY OPTION		TOTAL ESTIMATED AMOUNT
BOOSTER STATION	\$	2,500,000
ALTERNATIVE 1 ROUTE	\$	19,917,000
LS DISTRIBUTION IMPROVEMENTS FOR NEW WATER SUPPLY	\$	8,400,000
NEW STORAGE TANKS	\$	750,000
DEMOLITION OF EXISTING WTP'S AND ELECTRICAL IMPROVEMENTS	\$	2,000,000
LZ METERING AND BOOSTER STATION	\$	2,000,000
Subtotal Transmission Cost	\$	35,567,000
Contingency (30%)	\$	10,670,100
Total Construction Cost for Transmission	\$	46,237,100
Corrosion Control Study	\$	750,000
Engineering and Legal (20%)	\$	9,247,420
TOTAL TRANSMISSION COSTS	\$	56,235,000
SUPPLIER CONNECTION COSTS	\$	20,000,000
TOTAL CONNECTION COST (TRANSMISSION + CONNECTION COSTS)	\$	76,235,000

O&M Costs

LAKE MICHIGAN RECEIVING AND DISTRIBUTION					
ITEM NO.	ITEM	QUANTITY	UNIT PRICE	AMOUNT	
1	LAKE MICHIGAN RECEIVING AND DISTRIBUTION OM&R	1	\$ 114,587.00	\$ 114,587.00	/year
2	EMERGENCY BACKUP WELL OM&R	3	\$ 36,983.00	\$ 110,949.00	/year
TOTAL ESTIMATED OM&R COST FOR LAKE MICHIGAN RECEIVING AND DISTRIBUTION					\$ 225,536.00 /year

Lake Michigan Supply – NWC

Capital Costs

O&M Costs

NORTHWEST WATER COMMISSION LAKE MICHIGAN SUPPLY OPTION		TOTAL ESTIMATED AMOUNT
BOOSTER STATION	\$	2,500,000
ALTERNATIVE 1 ROUTE	\$	19,995,000
LS DISTRIBUTION IMPROVEMENTS FOR NEW WATER SUPPLY	\$	8,400,000
NEW STORAGE TANKS	\$	1,245,000
DEMOLITION OF EXISTING WTP'S AND ELECTRICAL IMPROVEMENTS	\$	2,000,000
LZ METERING AND BOOSTER STATION	\$	2,000,000
Subtotal Transmission Cost	\$	36,140,000
Contingency (30%)	\$	10,842,000
Total Construction Cost for Transmission	\$	46,982,000
Corrosion Control Study	\$	750,000
Engineering and Legal (20%)	\$	9,396,400
TOTAL TRANSMISSION COSTS	\$	57,129,000
SUPPLIER CONNECTION COSTS		\$ -
TOTAL CONNECTION COST (TRANSMISSION + CONNECTION COSTS)		\$ 57,129,000

LAKE MICHIGAN RECEIVING AND DISTRIBUTION					
ITEM NO.	ITEM	QUANTITY	UNIT PRICE	AMOUNT	
1	LAKE MICHIGAN RECEIVING AND DISTRIBUTION OM&R	1	\$ 114,587.00	\$ 114,587.00	/year
2	EMERGENCY BACKUP WELL OM&R	3	\$ 36,983.00	\$ 110,949.00	/year
TOTAL ESTIMATED OM&R COST FOR LAKE MICHIGAN RECEIVING AND DISTRIBUTION					\$ 225,536.00 /year

Lake Michigan Supply – NSMJAWA

Capital Costs

NSM-JAWA LAKE MICHIGAN SUPPLY OPTION		TOTAL ESTIMATED AMOUNT
BOOSTER STATION	\$	2,500,000
ALTERNATIVE 1 ROUTE	\$	31,267,000
LS DISTRIBUTION IMPROVEMENTS FOR NEW WATER SUPPLY	\$	8,400,000
NEW STORAGE TANKS	\$	1,425,000
DEMOLITION OF EXISTING WTP'S AND ELECTRICAL IMPROVEMENTS	\$	2,000,000
LZ METERING AND BOOSTER STATION	\$	2,000,000
Subtotal Transmission Cost	\$	47,592,000
Contingency (30%)	\$	14,277,600
Total Construction Cost for Transmission	\$	61,869,600
Corrosion Control Study	\$	750,000
Engineering and Legal (20%)	\$	12,373,920
TOTAL TRANSMISSION COSTS	\$	74,994,000
SUPPLIER CONNECTION COSTS	\$	-
TOTAL CONNECTION COST (TRANSMISSION + CONNECTION COSTS)	\$	74,994,000

O&M Costs

LAKE MICHIGAN RECEIVING AND DISTRIBUTION					
ITEM NO.	ITEM	QUANTITY	UNIT PRICE	AMOUNT	
1	LAKE MICHIGAN RECEIVING AND DISTRIBUTION OM&R	1	\$ 114,587.00	\$ 114,587.00	/year
2	EMERGENCY BACKUP WELL OM&R	3	\$ 36,983.00	\$ 110,949.00	/year
TOTAL ESTIMATED OM&R COST FOR LAKE MICHIGAN RECEIVING AND DISTRIBUTION					\$ 225,536.00 /year

Capital Costs - SUMMARY

Groundwater Treatment Capital Costs

SUMMARY	TOTAL ESTIMATED CAPITAL COST ¹
GROUNDWATER PRETREATMENT - RADIUM SELECTIVE MEDIA	\$ 13,586,000.00
3.5 MGD SINGLE STAGE (CLARICONE) LIME SOFTENING WATER TREATMENT PLANT	\$ 74,784,000.00
REGENERATION WASTE TREATMENT - WESTECH SPIRALATER	\$ 15,001,000.00
REGENERATION WASTE TREATMENT - DEWATERING	\$ 19,470,000.00

Lake Michigan Suppliers Capital Cost

LAKE MICHIGAN SUPPLY OPTION SUMMARY	TOTAL ESTIMATED CAPITAL COST
CENTRAL LAKE COUNTY - JAWA	\$ 76,235,000.00
NORTHWEST WATER COMMISSION	\$ 57,129,000.00
NORTH SUBURBAN MUNCIPAL-JAWA	\$ 74,994,000.00

O&M Costs- SUMMARY

SUMMARY	TOTAL ESTIMATED OM&R COST	
2020/2021 WATER OPERATIONS COST	\$ 2,100,000.00	/year
GROUNDWATER PRETREATMENT - RADIUM SELECTIVE MEDIA	\$ 1,287,500.00	/year
3.5 MGD SINGLE STAGE (CLARICONE) LIME SOFTENING WATER TREATMENT PLANT	\$ 2,092,272.00	/year
REGENERATION WASTE TREATMENT - WESTECH SPIRALATER	\$ 1,504,630.00	/year
REGENERATION WASTE TREATMENT - DEWATERING	\$ 1,454,630.00	/year
LAKE MICHIGAN RECEIVING AND DISTRIBUTION (Same for all LM Options)	\$ 225,536.00	/year

COST AND RATE ANALYSIS

LM SUPPLIERS - RATES

CLCJAWA

CURRENT RATE

MEMBER: \$1.52 / 1,000 Gal.

CUSTOMER: TBD – Likely based upon amortization of capital buy-in fee obligation over 30-years with no interest

PROPOSED RATE

MEMBER: \$1.99 / 1,000 Gal. by 2031

CUSTOMER: TBD – Likely based upon amortization of capital buy-in fee obligation over 30-years with no interest

NWC

CURRENT RATE

CUSTOMER
\$1.96 / 1,000 Gal.

PROPOSED RATE

Wholesale rates currently being discussed with Evanston; rate increase TBD

NSMJAWA

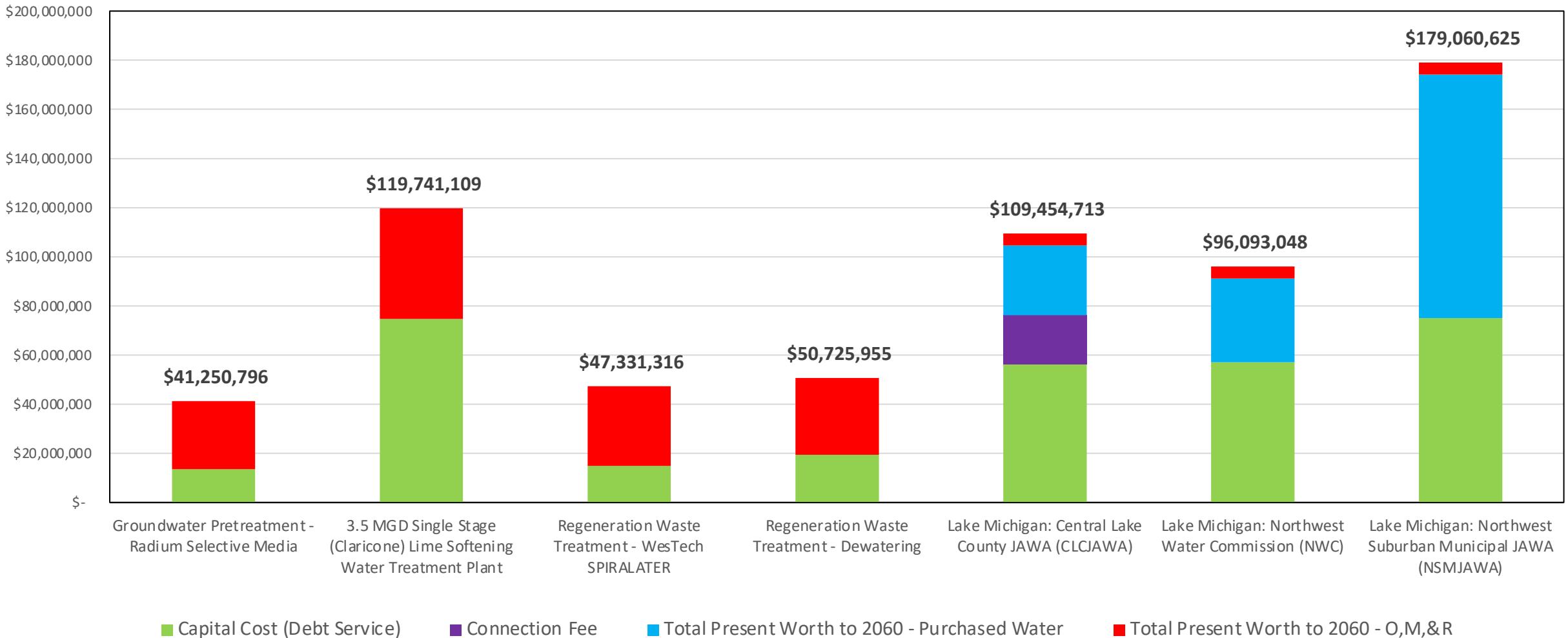
CURRENT RATE

CUSTOMER
\$5.70 / 1,000 Gal.

Customers DO NOT have a set rate; floats each year based on expenses and depends on cost to delivery, includes capital cost and debt service with debt free by 2032

PROPOSED RATE

Potential for future rate of ~\$1.50 / 1,000 Gal., pending negotiations/timing with COC




COST OF OWNERSHIP TO 2060

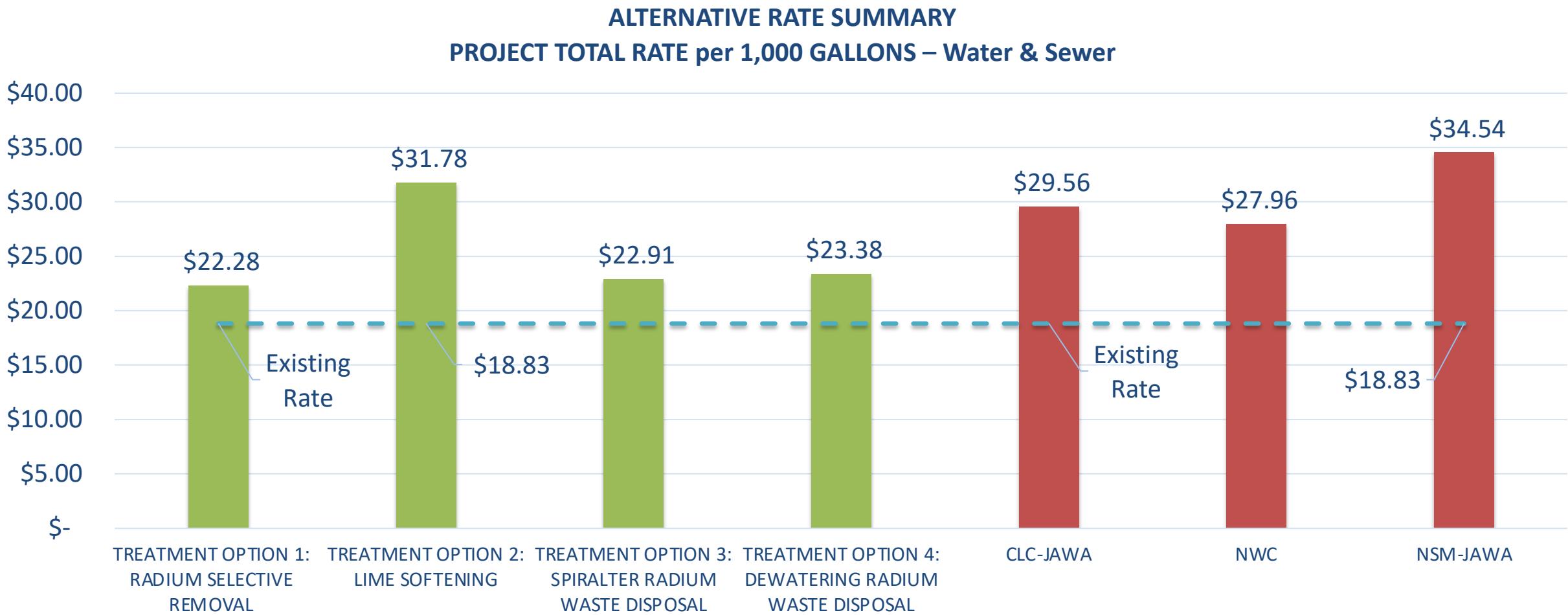
Alternative(s)	Purchased Water (2021)	OM&R Costs (2021)	Connection Fee	Total Present Worth to 2060 - Purchased Water	Capital Cost (Debt Service)	Total Present Worth to 2060 - O,M,&R	TOTAL PRESENT WORTH TO 2060 ¹	TOTAL COST INCURRED (SPENT) TO 2060
Groundwater Pretreatment - Radium Selective Media		\$ 1,287,500			\$ 13,586,000	\$ 27,664,796	\$ 41,250,796	\$ 108,310,270
3.5 MGD Single Stage (Claricone) Lime Softening Water Treatment Plant		\$ 2,092,272			\$ 74,784,000	\$ 44,957,109	\$ 119,741,109	\$ 240,477,497
Regeneration Waste Treatment - WesTech SPIRALATER		\$ 1,504,630			\$ 15,001,000	\$ 32,330,316	\$ 47,331,316	\$ 125,504,446
Regeneration Waste Treatment - Dewatering		\$ 1,454,630			\$ 19,470,000	\$ 31,255,955	\$ 50,725,955	\$ 127,409,698
Lake Michigan: Central Lake County JAWA (CLCJAWA)	\$ 890,327	\$ 225,536	\$ 20,000,000	\$ 28,373,572	\$ 56,235,000	\$ 4,846,142	\$ 109,454,713	\$ 145,808,762
Lake Michigan: Northwest Water Commission (NWC)	\$ 1,070,577	\$ 225,536		\$ 34,117,907	\$ 57,129,000	\$ 4,846,142	\$ 96,093,048	\$ 129,183,208
Lake Michigan: Northwest Suburban Municipal JAWA (NSMJAWA)	\$ 3,113,414	\$ 225,536		\$ 99,220,484	\$ 74,994,000	\$ 4,846,142	\$ 179,060,625	\$ 233,552,340

COST OF OWNERSHIP TO 2060

Lake Zurich Alternative Water Source Comparison:
Total Present Worth Cost of Ownership Comparison to 2060

Rate Impacts

1. Assumes Total Project Debt Service Funded by Rates
2. Function of Village Water Demand (MG per Year)
3. Evaluation
 - a. Evaluated Change in Water Operations Cost (OM&R).
 - b. Sewer rate not changed.
 - c. Total Capital Cost assumed to be Amortized over 20 years utilizing IEPA (State Revolving Loans – SRF).
 - d. Connection Costs assumed to be amortized over 20 years with no interest.
 - e. Debt service rate not changed.
 - f. Capital rate not changed.
 - g. LM Options – Assumes 2021 Water Rates from Suppliers – Does Not Include Future Rate Changes.



PROJECT RATE IMPACT

RATE IMPACTS PER OPTION	TOTAL RATE /1,000 GALLONS
EXISTING TOTAL RATE (Admin, Water, Sewer, Debt Service, Capital Improvements, Lake County)	\$ 18.83
Groundwater Treatment Options	
TREATMENT OPTION 1: RADIUM SELECTIVE REMOVAL	\$ 22.28
TREATMENT OPTION 2: LIME SOFTENING	\$ 31.78
TREATMENT OPTION 3: SPIRALTER RADIUM WASTE DISPOSAL	\$ 22.91
TREATMENT OPTION 4: DEWATERING RADIUM WASTE DISPOSAL	\$ 23.38
Lake Michigan Water Supply Options	
CLCJAWA	\$ 29.56
NORTHWEST WATER COMMISSION	\$ 27.96
NSMJAWA	\$ 34.54

Based Upon 2021 Rates – Does Not Account For Future Rate Changes

PROJECT RATE IMPACT

Based Upon 2021 Rates – Does Not Account For Future Rate Changes

Funding Options

1. Federal/State Infrastructure Stimulus
2. Loans
 - a. AWIA
 - b. IEPA (State Revolving Fund – SRF)
3. Municipal Bonds
4. Local Funding
5. Mix of Options Noted Above

A black and white photograph showing a vast, sprawling quarry filled with numerous large, black, cylindrical pipes. These pipes are stacked in long, winding rows that stretch into the distance under a clear sky. The perspective is from a low angle, looking along the length of the pipes.

CONCLUSIONS/ RECOMMENDATIONS

CONCLUSIONS

- Costs Presented are Preliminary Estimates and Include 30% Contingency (Conservative)
- Existing Groundwater Pretreatment with Radium Selective Media Lowest Capital and Present Worth Cost
- NWC Lowest LM Supplier Cost Option
- CLCJAWA Comparable Capital Cost to NWC, but Equity Buy-In has Big Impact
- Regardless of Option, There will be Increase to Cost of Water

Conclusions and Recommendations

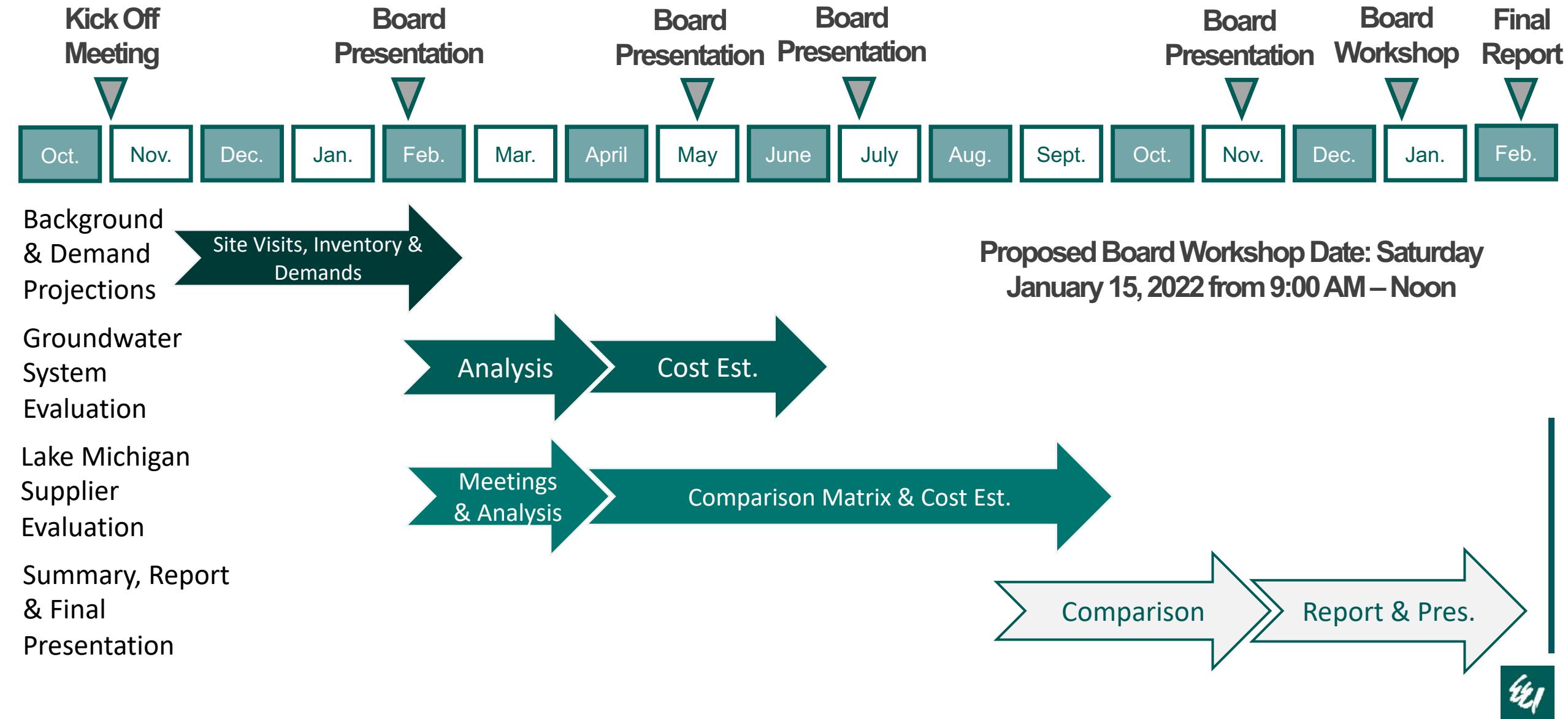
RECOMMENDATIONS

- Cost Analysis a Piece of the Overall Decision-Making Process
- Workshop will Provide Further Opportunity to Review Costs and Other Critical Factors (Decision Matrix and Discussion)
- Goal/Outcome of Upcoming Workshop to Narrow Down Options and Pick a General Path (Groundwater? LM Supply? Etc.)

DESCRIPTION			PROJECT COSTS				EVALUATION CRITERIA																
			Capital Cost	Annual O&M Cost	Total Cost	Anticipated Finished Water Quality		Implementation Difficulty (Short Term Risk)		Operation & Maintenance		Long Term Risk and Reliability		Expandability/Partners		Control							
Ranking Criteria			Capital (implementation) Costs?	Annual O&M Costs	Total Project Costs (implementation and O&M)	What is quality and variability of the finished water for this alternative?		Difficult in implementing this alternative (magnitude of improvements, schedule, permitting)?		Does this alternative require significant O&M responsibility or O&M required for improvements outside of the Village?		Does the alternative provide for the most reliable, long term solution.		Does this alternative provide for either LZ water supply growth and/or partnering with other communities to offset the cost of improvements?		For this alternative, does the Village maintain complete control of their water source?							
Highest			1 - Highest Cost				1 - Finished water quality is variable and/or reduced from present standard.		1 - This alternative is the most difficult and has the highest risk to implement.		1 - This alternative has the highest anticipated O&M responsibility and costs		1 - This alternative is the only a short term solution with potential long term risk and consequences.		1 - This alternative has the least opportunity to allow expansion of the water system or partner with other communities.		1 - The Village does not retain significant control of water system						
Lowest			5 - Lowest Cost				5 - Finished water quality is more consistent and/higher than present standard.		5 - This alternative is the least difficult and has the lowest risk to implement.		5 - This alternative has the least anticipated O&M responsibility and costs		5 - This alternative provides for a long term (exceeding 50 year) solution with least and most manageable long term risks		5 - This alternative has the most opportunity to allow expansion of the water system or partner with other communities.		5 - The Village maintains complete control						
			Weight	0%	Weight	0%	Weight	0%	Weight	0%	Weight	0%	Weight	0%	Weight	0%	Weight	0%	Weight	0%	Weight	0%	
Alternative	Source	Supply Agency(s)	Value	Weighted Value	Value	Weighted Value	Value	Weighted Value	Value	Weighted Value	Value	Weighted Value	Value	Weighted Value	Value	Weighted Value	Value	Weighted Value	Value	Weighted Value	Value	Weighted Value	Weighted Total Value

Lake Michigan Suppliers

MATRIX RANKING CRITERIA


- Project Costs
 - Capital (implementation) Costs
 - Annual O&M Costs
 - Total Project Costs
- Anticipated Finished Water Quality
- Implementation Difficulty (Short Term Risk)
- Operation & Maintenance
- Long Term Risk and Reliability
 - Safety Considerations
 - Future Regulations
- Expendability / Partners
- Control (Member vs. Customer)

Next Steps

PROJECT SCHEDULE

Questions or
Comments?

THANK YOU

We value your time and appreciate the opportunity to present this evening.

Engineering
Enterprises, Inc.

STEPHEN T. DENNISON, PE
Senior Project Manager / Principal
sdennison@eeiweb.com
(630) 466-6762

JEFFREY W. FREEMAN, PE, CFM, LEED AP
Chief Executive Officer
jfreeman@eeiweb.com
(630) 466-6718

52 Wheeler Road
Sugar Grove, IL

www.eeiweb.com